IMP: Iterative Matching and Pose Estimation with Adaptive Pooling

Fei Xue, Ignas Budvytis, Roberto Cipolla

Problem
- Relative pose estimation via keypoints matching

Limitations of prior methods
- Matching and pose estimation are independent
- Geometric information is ignored
- Graph-based matchers have good performance but suffer from high computational cost

Motivation
- Iterative matching and pose estimation
- Adaptively discarding keypoints without correspondences
- Robust pose-guided pooling

Approach
- Iterative matching and pose estimation
- Transformer-based recurrent module
- Pose-aware loss in the training process
- Pose-guided matching in the testing process

Results
- More inliers and accurate poses (matches / inliers / R error / t error)

Adaptive pooling of keypoints (Efficient IMP - EIMP)
- Pooling with attention scores and matching matrix to remove outliers
- Pose-guide pooling to avoid over pooling when matches are not good

Percentage of pose errors within 5/10/20 deg on YFCC dataset

<table>
<thead>
<tr>
<th></th>
<th>5 deg</th>
<th>10 deg</th>
<th>20 deg</th>
</tr>
</thead>
<tbody>
<tr>
<td>SuperGlue</td>
<td>32.6%</td>
<td>44.1%</td>
<td>55.6%</td>
</tr>
<tr>
<td>SGMNet</td>
<td>36.8%</td>
<td>49.7%</td>
<td>61.6%</td>
</tr>
<tr>
<td>CLNet</td>
<td>38.9%</td>
<td>51.6%</td>
<td>63.0%</td>
</tr>
<tr>
<td>IMP</td>
<td>42.8%</td>
<td>55.4%</td>
<td>67.1%</td>
</tr>
<tr>
<td>EIMP</td>
<td>45.2%</td>
<td>58.2%</td>
<td>70.4%</td>
</tr>
</tbody>
</table>

Running time

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>SuperGlue</th>
<th>SGMNet</th>
<th>IMP</th>
<th>EIMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (ms)</td>
<td>43</td>
<td>35</td>
<td>37</td>
<td>35</td>
</tr>
</tbody>
</table>

Uncertainty of pose shows the quality of matches

Attention scores show possibilities of keypoints being inliers

More robust (inliers) to viewpoint, illumination, and seasonal changes

More accurate poses and higher efficiency

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>NN</th>
<th>CLNet</th>
<th>SuperGlue</th>
<th>SGMNet</th>
<th>IMP</th>
<th>EIMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inliers</td>
<td>6.5</td>
<td>27.8</td>
<td>37.1</td>
<td>33.0</td>
<td>39.4</td>
<td>37.9</td>
</tr>
<tr>
<td>R error</td>
<td>15.4</td>
<td>46.4</td>
<td>57.2</td>
<td>53.0</td>
<td>59.4</td>
<td>57.9</td>
</tr>
<tr>
<td>t error</td>
<td>28.5</td>
<td>63.8</td>
<td>73.6</td>
<td>70.0</td>
<td>75.2</td>
<td>74.0</td>
</tr>
</tbody>
</table>

[2] SGMNet, Chen et al., ICCV 2021
[3] CLNet, Zhao et al., ICCV 2021
[5] Suerpoint, DeTone et al., CVPRW 2018