

• Problem

• Relative pose estimation via keypoints matching

• Limitations of prior methods

- Matching and pose estimation are independent
- Geometric information is ignored
- Graph-based matchers have good performance but suffer from high computational cost

• Motivation

- Iterative matching and pose estimation
- Adaptively discarding keypoints without correspondences
- Robust pose-guided pooling

Iterative matching and pose estimation (more matches, more precise poses, fewer keypoints)

- [1] SuperGlue, Sarlin et al, CVPR 2020
- [2] SGMNet, Chen et al., ICCV 2021
- [3] CLNet, Zhao et al., ICCV 2021
- [4] YFCC, Thomee et al., Communications of the ACM, 2016
- [5] Suerpoint, DeTone et al., CVPRW 2018

IMP: Iterative Matching and Pose Estimation with Adaptive Pooling

Fei Xue, Ignas Budvytis, Roberto Cipolla

- Approach **Iterative matching and pose estimation** Transformer-based recurrent module • Pose-aware loss in the training process Pose-guided matching in the testing process _____ Feature I Feature I Matching 111-20-47 Groundtruth pose P^{gt} — Newly predicted match — Discarded keypoint [] Iterative block $X^{(t)} \in R^{m(t) \times d} \quad X^{(t+1)} \in R^{m(t+1) \times d}$ descriptor candidate $Y^{(t)} \in \mathbb{R}^{n(t) \times d} \quad Y^{(t+1)} \in \mathbb{R}^{n(t+1) \times d}$ Descriptor Geometry-aware Augmentation Pooling Geometry-aware Matching $M^{(t)}$ Pose Estimation I Pose-guided • true match • geometry candidate Matching M **Transformer-based recurrent module Pose-guided matching**
- **Adaptive pooling of keypoints (Efficient IMP EIMP)**
- Pooling with attention scores and matching matrix to remove outliers
- Pose-guide pooling to avoid over pooling when matches are not good

(e) Keypoints with potential matches and high scores (d) Keypoints with potential matches **Percentage of pose errors within 5/10/20 deg on YFCC dataset Attention scores show possibilities of keypoints being inliers** (best and second-best) Uncertainty of pose shows the quality of matches

Pose convergences

- **Results**

SuperGlue

SGMNet

• More accurate poses and higher efficiency

NN	6.5	15.4	28.5
CLNet	27.8	46.4	63.8
SuperGlue	37.1	57.2	73.6
SGMNet	33.0	53.0	70.0
IMP	39.4	59.4	75.2
EIMP	37.9	57.9	74.0

• More inliers and accurate poses (matches / inliers / R error / t error)

• More robust (inliers) to viewpoint, illumination, and seasonal changes

EIMP

