

IMP: Iterative Matching and Pose Estimation with Adaptive Pooling

Fei Xue

Ignas Budvytis

Roberto Cipolla

Preview of IMP

Preview of IMP

Feature matching and pose estimation

• Traditional approaches

- Two separate steps
- Slow & inaccurate

• Outlier filtering

- Promising performance
- Accuracy limited by initial matches

Advanced matchers

- Good accuracy
- Quadratic time cost

[1] Zhang et al., Learning two-view correspondences and geometry using order-aware network, ICCV 2019[2] Sarlin et al., Superglue: Learning feature matching with graph neural networks, CVPR, 2020

Motivation

• Geometric connections

- Several matches give a coarse pose
- The pose guides the matching
- Keypoints pooling
 - Not all keypoints have matches
 - Unnecessary to update these keypoints

Detected keypoints

Keypoints with matches

Progressive matching and pose estimation More accurate matches and precise pose

- **Keypoints** 1024×1024
- Matches 285×285 27.8%
- Outliers 739 × 739 72.2%

Iterative matching & pose estimation

Transformer-based recurrent module

[2] Hartley and Zisserman, Multiple view geometry in computer vision, Cambridge university press 2003

Adaptive pooling

- Attention score tells which are inliers
 - keypoints with high scores \approx inliers

• Our intention

- Keep as many inliers as possible
- Remove as many low-contribution samples as possible

Keypoints with potential correspondences

• How to decide which one to discard

Adaptive pooling

• Using matching matrix as guidance

Step 1: samples with high matching score as seeds (inliers) $X_{M}^{(t)}, Y_{M}^{(t)}, M_{X,Y} \ge \theta$

Samples (seeds) with potential matches

Finally kept keypoints

Step 2: retain samples with high attention scores with guidance (keypoints with high contribution) Attention scores Median value \downarrow \downarrow \downarrow $X_A^{(t+1)} = X_{Self}^{(t)} \cup X_{Cross}^{(t)}, S(X_{Self/Corss}) \ge md(S(X_M^{(t)}))$ $Y_A^{(t+1)} = Y_{Self}^{(t)} \cup Y_{Cross}^{(t)}, S(Y_{Self/Corss}) \ge md(S(Y_M^{(t)}))$

Step 3: merge samples with potential matches and high attention scores

$$X^{(t+1)} = X_M^{(t)} \cup X_A^{(t+1)}, Y^{(t+1)} = Y_M^{(t)} \cup Y_A^{(t+1)}$$

Number of keypoints: **1024** -> **496/385**

Adaptive pooling

• Uncertainty-aware pooling

- Matches could be wrong due to large viewpoint changes
- Poses reveal the quality of matches

Step 2: retain samples with high attention scores with guidance

Attention scores Median value $\begin{array}{c}
\downarrow \\
X_{A}^{(t)} = X_{Self}^{(t)} \cup X_{Cross}^{(t)}, S(X_{Self/Corss}) \geq md(S(X_{M}^{(t)})) * \tau \\
Y_{A}^{(t)} = Y_{Self}^{(t)} \cup Y_{Cross}^{(t)}, S(Y_{Self/Corss}) \geq md(S(Y_{M}^{(t)})) * \tau
\end{array}$

$$\tau = \frac{|(x_i, y_i), s. t., f_{epipolar}(x_i, y_i, P^t) \le \theta_{epipolar}|}{|(x_i, y_i) \in M^{(t)}|}$$

Preserved keypoints and ratio of inliers

Pose not accurate \rightarrow matches not good \rightarrow keep more samples Pose accurate \rightarrow matches good \rightarrow keep fewer samples

Quantitative results

• Training

• Megadepth dataset from scratch without any pretraining

• Better pose accuracy

Outdoor YFCC and Indoor Scannet datasets

Group	Method	@5	@10	@20	@5	@10	@20
	NN-mutual	6.5	15.4	28.5	9.4	21.6	36.4
Filtering	AdaLAM	20.8	36.5	51.9	6.7	15.8	27.4
	OANet	19.2	34.5	50.3	10.0	25.1	38.0
	CLNet	27.8	46.4	63.8	4.1	11.0	21.6
Graph- matcher	SuperGlue	37.1	57.2	73.6	16.2	32.6	49.3
	SGMNet	35.3	56.1	73.6	16.4	32.1	48.7
	IMP	39.4	59.4	75.2	16.6	33.1	49.4
	EIMP	37.9	57.9	74.0	15.9	32.4	48.9

Relative pose accuracy on YFCC and Scannet datasets The **best** and **second-best** are highlighted.

- [1] Zhang et al., Learning two-view correspondences and geometry using order-aware network, ICCV 2019
- [2] Sarlin et al., Superglue: Learning feature matching with graph neural networks, CVPR 2020
- [3] Li and Snavely, Megadepth: Learning singleview depth prediction from internet photos. CVPR 2018
- [4] Thomee et al., YFCC100M: The new data in multimedia research, Communications of the ACM 2016
- [5] Dai et al., Bundlefusion: Real-time globally consistent 3d reconstruction using on-the-fly surface reintegration, ACM ToG 2017
- [6] Zhao et al., Progressive correspondence pruning by consensus learning, ICCV 2021
- [7] Chen et al., Learning to match features with seeded graph matching network, CVPR 2021

• Higher speed

- IMP is faster than SuperGlue
- EIMP is close to SGMNet

Running time of different #keypoints

Extracted keypoints

Inliers/matches: 38/96, R/t error: 3.2/4.5deg Keypoints left/right: 538/445 Inliers/matches: 34/80, R/t error: 2.6/5.3deg Keypoints left/right: 538/445

IMP (iteration 1)

EIMP (iteration 1)

Inliers/matches: 46/93, R/t error: 1.6/1.0deg Keypoints left/right: 538/445 Inliers/matches: 45/79, R/t error: 2.9/2.3deg Keypoints left/right: 205/237

IMP (iteration 2)

EIMP (iteration 2)

Inliers/matches: 51/89, R/t error: 1.8/0.9deg Keypoints left/right: 538/445 Inliers/matches: 45/80, R/t error: 2.2/0.9deg Keypoints left/right: 205/237

IMP (iteration 3)

EIMP (iteration 3)

Inliers/matches: 46/93, R/t error: 1.6/1.0deg Keypoints left/right: 538/445 Inliers/matches: 45/79, R/t error: 2.9/2.3deg Keypoints left/right: 205/237

Inliers/matches: 8/98, R/t error: 3.2/3.5deg Keypoints left/right: 538/445 SuperGlue

Inliers/matches: 6/95, R/t error: 3.7/4.0deg Keypoints left/right: 538/445 SGMNet

Extracted keypoints

IMP (iteration 1)

EIMP (iteration 1)

Inliers/matches: 17/55, R/t error: 11.9/4.1deg Keypoints left/right: 240/549 Inliers/matches: 28/54, R/t error: 5.4/2.5deg Keypoints left/right: 240/400

IMP (iteration 2)

EIMP (iteration 2)

IMP (iteration 3)

EIMP (iteration 3)

IMP

Inliers/matches: 30/70, R/t error: 8.1/2.0deg

Keypoints left/right: 240/549

Inliers/matches: 27/49, R/t error: 4.9/1.8deg Keypoints left/right: 240/381

EIMP

Inliers/matches: 0/1, R/t error: FAIL Keypoints left/right: 240/549 SuperGlue Inliers/matches: 5/41, R/t error: 16.1/8.1deg Keypoints left/right: 240/549 SGMNet

Extracted keypoints

IMP (iteration 1)

EIMP (iteration 1)

IMP (iteration 2)

EIMP (iteration 2)

IMP (iteration 3)

EIMP (iteration 3)

Inliers/matches: 302/367, R/t error: 3.5/2.5deg

Keypoints left/right: 2000/2000

Inliers/matches: 274/293, R/t error: 4.2/3.1deg Keypoints left/right: 600/677

Inliers/matches: 21/73, R/t error: 11.7/8.9deg Keypoints left/right: 2000/2000 SuperGlue

Inliers/matches: 126/178, R/t error: 11.0/8.4deg Keypoints left/right: 2000/2000 SGMNet

Conclusion and future work

• Iterative matching and pose estimation

- Finding matches and estimating poses iteratively
- Discarding useless keypoints dynamically

• Future work

• Replacing traditional pose estimation with deep models

