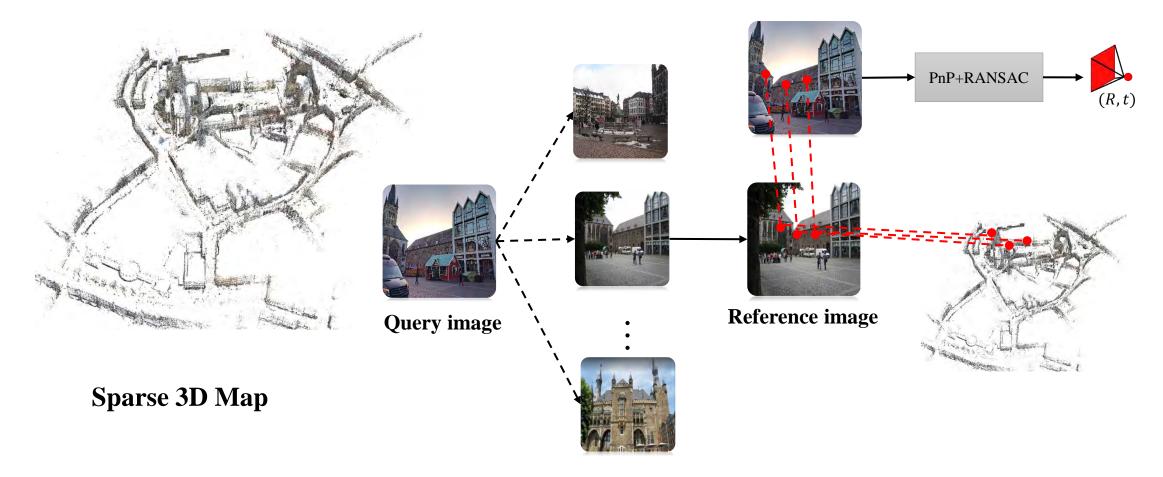


Efficient Large-scale Localization by Global Instance Recognition


Fei Xue Ignas Budvytis

Daniel Olmeda Reino

Roberto Cipolla

Structure-based localization

Coarse localization

Fine localization

Challenges

1. Large-scale

• Slow search for reference from the whole database

Aachen city (1.5km x 1.5km, 6697 reference images)¹

2. Appearance changes

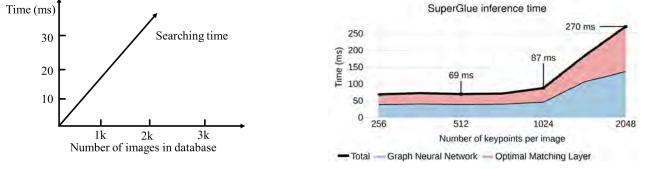
• Wrong matches between keypoints

Query image

Reference image

Illumination changes

Seasonal variations Changing environments


Images from Aachen dataset¹

[1] Sattler et al., Image Retrieval for Image-Based Localization Revisited. BMVC 2012

Prior solutions

1. Hierarchical localization methods Time

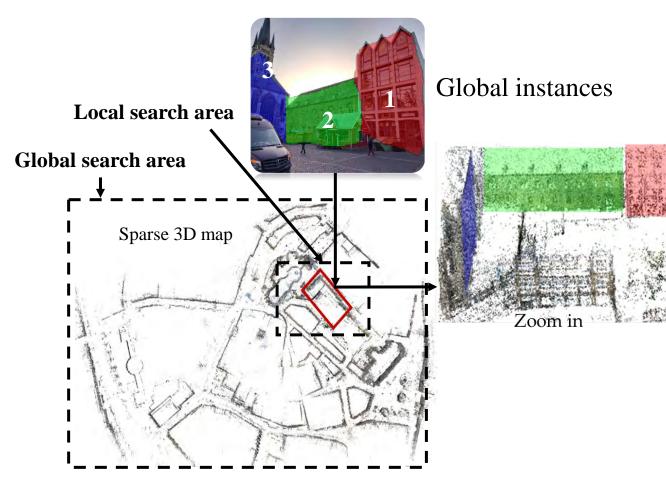
- NetVLAD² + Superpoint³
- NetVLAD²+Superpoint²+SuperGlue⁶
- Slow global reference search
- Slow advanced matchers

Linear complexity of reference search Quadratic complexity of SuperGlue⁶

2. Semantics-based localization

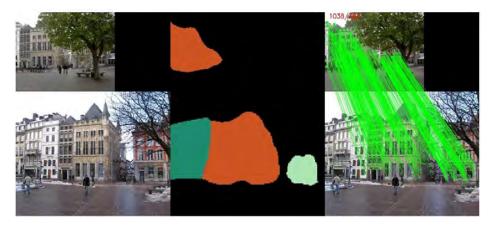
- Globally unique instance⁷, SSM⁴, SMC⁵
- Direct filtering
- Fragile to segmentation errors (e.g., night images)

Segmentations on night images of Aachen dataset¹

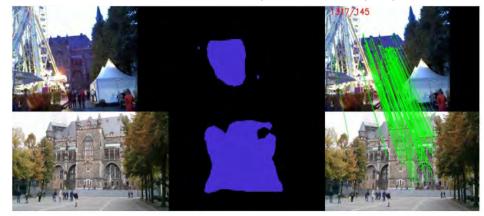

- [2] Arandjelovic, et al., NetVLAD: CNN Architecture for Weakly Supervised Place Recognition. CVPR 2016
- [3] DeTone et al., Superpoint: Self-supervised interest point detection and description. CVPRW 2018
- [4] Shi et al., Visual localization using sparse semantic 3D map. ICIP 2019
- [5] Toft et al., Semantic match consistency for long-term visual localization. ECCV 2018
- [6] Sarlin et al., SuperGlue: Learning Feature Matching with Graph Neural Networks. CVPR 2020
- [7] Budvytis et al., Large Scale Joint Semantic Re-Localisation and Scene Understanding via Globally Unique Instance Coordinate Regression. BMVC 2019

^[1] Sattler et al., Image Retrieval for Image-Based Localization Revisited. BMVC 2012

Our method: global instance recognition

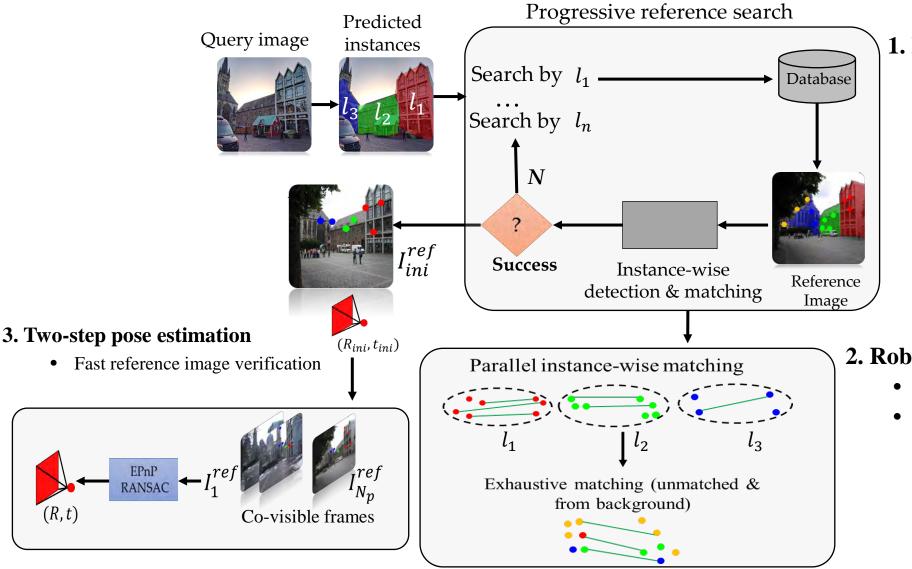

1. Discriminative for locations

• From **global search** to **local search**



2. Robust to appearance changes

• Instance-wise detection & matching

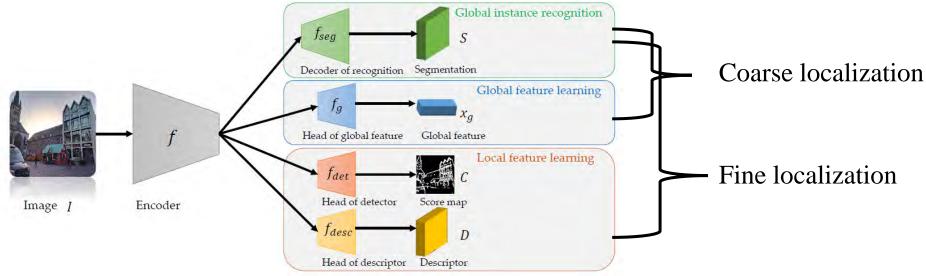

Matches between images¹ in changing scenes

Matches between images¹ across seasons

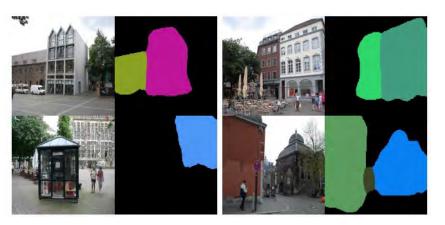
[1] Sattler et al., Image Retrieval for Image-Based Localization Revisited. BMVC 2012

Our method: robust localization by recognition

•

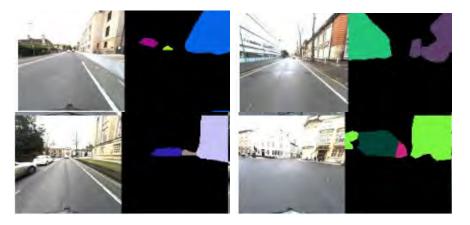

(R,t)

1. Progressive reference search


- Fast search in local area
- Robust to recognition errors •

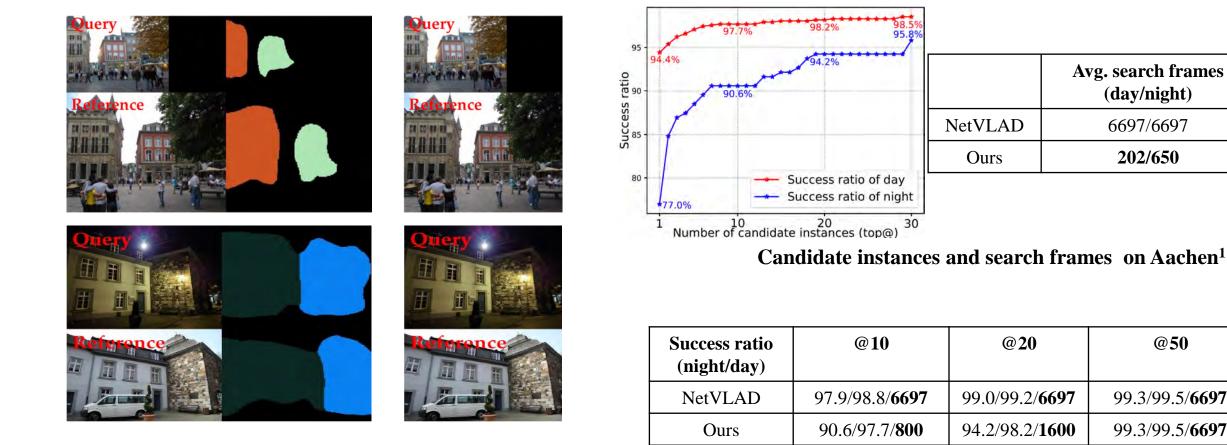
- 2. Robust instance-wise matching
 - Robust to segmentation errors
 - Robust to images without global instances

Experimental setup



Architecture of our network

Aachen dataset¹ (452 global instances, 6697 reference images)


Sattler et al., Image Retrieval for Image-Based Localization Revisited. BMVC 2012
 Maddern, et al., 1 Year, 1000km: The Oxford RobotCar Dataset. IJRR 2017

RobotCar-Seasons dataset² (692 global instances, 8707 reference images)

Experiment 1: progressive reference search

Ours (search frames: 80) NetVLAD² (search frames: 6697) As good as NetVLAD, but 33x, 10x faster on day/night images

Success ratio and number of reference images

202/650

@50

99.3/99.5/6697

99.3/99.5/6697

Experiment 2: fine localization accuracy

We achieve best (bold) or second best fine localization accuracy on Aachen ¹	We achieve best (bold) or <mark>second best</mark> fir	ne localization accuracy	on Aachen ¹
---	-----------------------	-----------------------------------	--------------------------	------------------------

		Day	Night
Classic	CPF ⁵	76.7 / 88.6 / 95.8	33.7 / 48.0 / 62.2
Semantic-aware	SMC ⁷	71.8 / 91.5 / 96.8	58.2 / 76.5 / 90.8
Learned feature	D2Net ⁶	84.8 / 92.6 / 97.5	84.7 / 90.8 / 96.9
Advanced matcher	SPP+SuperGlue ^{3,4}	89.6 / 95.4 / 98.8	86.7 / 93.9 / 100.0
Instance, no advanced matcher	Ours	88.3 / 95.6 / 98.8	84.7 / 93.9 / 100.0

Our method is much faster than prior SOTA (NetVLAD+SPP+SuperGlue)

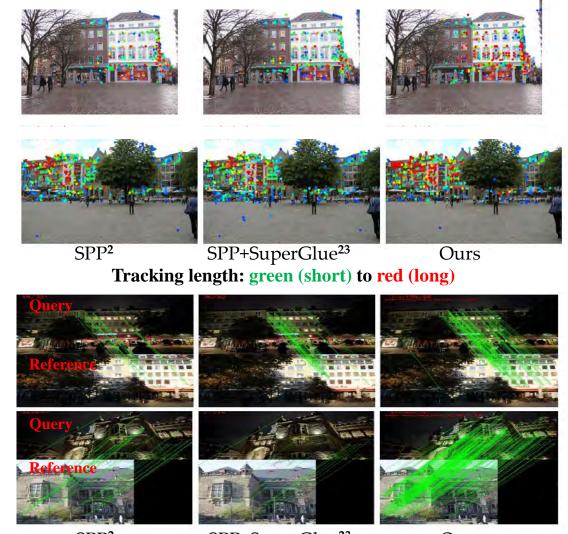
NetVLAD+SPP+SuperGlue	NetVLAD ² (1024x1024)	SPP (1024x1024)	SuperGlue (4k kpts)	Total
	31.9ms	12.0ms	146.8ms	190.7ms
Ours	Recognition (256x256)	Local feature (1024x1024)	Instance-wise match (4k kpts)	
	9.2ms	30.1ms	3ms	42.3ms

Running time of different components (RTX 3090)

[1] Sattler et al., Image Retrieval for Image-Based Localization Revisited. BMVC 2012

[2] Arandjelovic, et al., NetVLAD: CNN Architecture for Weakly Supervised Place Recognition. CVPR 2016

- [3] DeTone et al., Superpoint: Self-supervised interest point detection and description. CVPRW 2018
- [4] Sarlin et al., SuperGlue: Learning Feature Matching with Graph Neural Networks. CVPR 2020
- [5] Cheng et al., Cascaded parallel filtering for memory-efficient image-based localization. ICCV 2019
- [6] Dusmanu et al., D2-Net: A trainable CNN for joint description and detection of local features. CVPR 2019
- [7] Shi et al., Visual localization using sparse semantic 3D map.ICIP 2019


Experiment 3: robust instance-wise detection and matching

^{89.9} Day 89.8 <u>7</u>7.0 75.9 Night 90 -_75.4 89.0 8.88 75 73.3 75.4 <u>8</u>7.9 88. 72.8 88 87.4 Localization accuracy (2deg, 0.25m) 88 89 99 99 66 70 86.9 86.9 65 84.0 60 83.6 SDD 55 spp+superglue 51.8 r2d2 50 80 ours 79.6 48.2 1k Зk 2k 1k 4k 3k 2k Number of keypoints Number of keypoints Reduced number of keypoints (Aachen day/night)¹

1. Robust to reduced number of keypoints

[1] Sattler et al., Image Retrieval for Image-Based Localization Revisited. BMVC 2012
[2] DeTone et al., Superpoint: Self-supervised interest point detection and description. CVPRW 2018
[3] Sarlin et al., SuperGlue: Learning Feature Matching with Graph Neural Networks. CVPR 2020
[4] Revaud et al., R2D2: repeatable and reliable detector and descriptor. NeurIPS 2019.

2. More robust features and inlier matches

SPP²

SPP+SuperGlue²³ Inlier matches

Ours

Conclusion and limitations

• Localization by recognizing global instances

- Progressive reference search (fast and robust to recognition errors)
- Robust instance-wise matching (fast and robust to segmentation errors)
- Limitations and future work
 - Current instances are defined on buildings -> extension to other objects
 - It works in large-scale scenes -> application to larger-scale scenes (city-scale)

Source code: https://github.com/feixue94/lbr