

SFD2: Semantic-guided Feature Detection and Description

Fei Xue

Ignas Budvytis

Roberto Cipolla

Preview of SFD2

- Feature detection & description Implicit semantic embedding
 - Long-term localization
 - Sensitive to season changes

• Explicit semantics

• Slower at test time

- Semantic-aware guidance
- Feature-aware guidance
- No explicit semantics at test time
 - Faster
 - Less fragile to segmentation errors

Ours

Superpoint

R2D2

• Robust to appearance changes

Local features are key to localization

• Challenges of long-term localization

- Large viewpoint changes
- Severe illumination and seasonal changes
- Dynamic objects

• Prior features are local

- Indiscriminative detection
- Sensitive to above challenges

Many useless keypoints from sky, trees, cars

Query image

Illumination

Reference image season chang

changing scenes

Localization errors

Superpoint

R2D2

[1] SPP: DeTone et al., CVPRW 2018[2] D2Net: Dusmanu et al., CVPR 2019[3] R2D2: Revaud et al, NeurIPS 2019

Local features are key to localization

• Semantic-aware localization

- More robust to appearance changes
- Need explicit semantic labels at test time
- Fragile to wrong segmentation results

Semantic mask

Areas with different stability

Semantics and can be used for matching

Usage of explicit semantic labels are fragile to segmentation errors

Implicit semantic embedding

• Implicit semantic embedding

- Learning from segmentation networks
- Semantic-wise guidance

- Semantics are embedded into feature network
- No need of explicit semantics at test time

Semantic-aware guidance – detection

Semantic-aware guidance – description

• Inter-class discrimination

- Min. dist. of same classes
- Max. dist. of different classes

$$L_{inter} = \frac{1}{N} \sum \left(\left\| x_i^{c1} - x_j^{c1} \right\|_2 - \left\| x_i^{c1} - x_k^{c2} \right\|_2 + m \right)$$

• Intra-class discrimination

Ranking loss

Min. ranks of pos. samples

Max. ranks of neg. samples

Triplet loss

Min. dist. of pos. samples

Max. dist. of neg. samples

Descriptor map X

Feature-aware guidance

High-level semantics are not easy to learn
Feature-consistency loss

$$L_{feat} = \frac{1}{2} \sum_{i} |X_i - X_i^{seg}|$$

Consistent with segmentation networks

Architecture of our network

[1] SPP: DeTone et al., CVPRW 2018[2] ConvXt: Liu et al., CVPR 2022

• Total loss

- Semantic-aware detection loss
- Semantic-aware description loss
- Feature-consistency loss
- Superpoint \rightarrow local reliability
- ConvXt \rightarrow semantic labels

 $L_{total} = \alpha_{det}L_{det} + \alpha_{desc}(L_{inter} + L_{intra}) + \alpha_{feat}L_{feat}$

Experiments-detection

• 1000 keypoints (top 1-250, 250-500, 500-750, 750-1000)

[2] D2Net: Dusmanu et al., CVPR 2019[3] R2D2: Revaud et al, NeurIPS 2019[4] ASLFeat: Luo et al., CVPR 2020

Experiments

• Inliers between query and reference images

SuperPoint R2D2 ASLFeat Ours • More robust to viewpoint changes More robust to ۲ dynamic objects • More robust to illumination changes • More robust to seasonal changes

More accurate for long-term localization

- Aachen Day Night and RobotCar Seasons datasets
- Semantic-aware methods (S) (e.g., LBR, SSM)
- Local features (L) (e.g., SuperPoint, R2D2, ASLFeat)
- Advanced matchers (M) (e.g., SuperGlue, SGMNet)

Localization at error thresholds of 0.25m, 2° /0.5m, 5°/5m 10°

Best and second-best results are highlighted

Group	Method	Day	Night	Day	Night	Night-rain	
S	SSM	71.8/91.5/96.8	58.2 / 76.5 / 90.8	54.5 / <mark>81.6</mark> / 96.7	10.0 / 23.7 / 45.4	14.5 / 33.2 / 47.5	
	LBR	88.3 / 95.6 / 98.8	84.7 / <mark>93.9</mark> / 100.0	56.7 / 81.7 / 98.2	24.9 / 62.3 / 86.1	47.5 / 73.4 / 90.0	Better
	Ours	88.2 / 96.0 / 98.7	87.8 / 94.9 / 100.0	56.9 / 81.6 / 97.4	27.6 / 66.2 / 90.2	43.0 / 71.1 / 90.0]
L	Superpoint	80.5 / 87.4 / 94.2	42.9 / 62.2 / 76.5	56.5 / 81.5 / 97.1	16.9 / 41.6 / 71.5	22.0 / 45.0 / 68.0	
	R2D2	N/A	76.5 / 90.8 / 100.0	57.4 / 81.9 / 97.9	18.3 / 43.4 / 67.8	29.1 / 50.2 / 68.2	Significantly better
	Ours	88.2 / 96.0 / 98.7	87.8 / 94.9 / 100.0	56.9 / 81.6 / 97.4	27.6 / 66.2 / 90.2	43.0 / 71.1 / 90.0]
М	SuperGlue	89.6 / 95.4 / 98.8	86.7 / 93.9 / 100.0	56.9 / 81.7 / 98.1	24.2 / 62.6 / 87.4	42.3 / 69.3 / 90.2	
	SGMNet	86.8 / 94.2 / 97.7	83.7 / 91.8 / 99.0	N/A	N/A	N/A	
	Ours	88.2 / 96.0 / 98.7	87.8 / 94.9 / 100.0	56.9 / 81.6 / 97.4	27.6 / 66.2 / 90.2	43.0 / 71.1 / 90.0	[1] Aachen: Sattler et al., CVPR 2018
							 [2] SSM: Shi et al., ICIP 2019 [3] LBR: Xue et al., CVPR 2022 [4] SuperGlue: Sarlin et al., CVPR 2020 [5] SGMNet: Chen et al., ICCV 2021

Robust to keypoints changes & faster

• Performance against #kpts (4k, 3k, 2k, 1k)

Localization accuracy on Aachen at error thresholds of 0.5m, 5^{o}

- Running time
 - Much faster than R2D2 and SuperGlue
 - Slower but more accurate than Superpoint
 - A good trade-off between accuracy and efficiency

Method	Time (ms)		
LBR	39.3		
SuperPoint	13.1		
R2D2	72.4		
SuperGlue	159.6		
Ours	33.2		

Running time on RTX 3090

Summary and future work

• Summary

- Embedding semantics into local features implicitly
- Semantic-aware and feature-aware guidance
- More accurate and robust than prior competitors

• Future work

- Semantic labels are based-on ADE20k
- Current framework is designed for outdoor localization

- \rightarrow Learning semantic labels automatically
- → A general model for both indoor and outdoor scenes